The Crystal Structure of Pu_sSi₃*

BY DON T. CROMER, ALLEN C. LARSON AND R. B. ROOF, JR.

University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico, U.S.A.

Received 11 *September* 1963)

 $Pu_sSi₂$ is isostructural with W_rSi₃. The unit cell is tetragonal, space group No. 140, *I4/mcm*, $a =$ 11.409, $c = 5.448$ Å, and there are four formula units per unit cell. Least-squares refinement of counter data has been carried out.

Introduction

The plutonium-silicon binary system contains at least five compounds (Coffinberry & Miner, 1961). These are PuSi, $Pu₂Si₃$, $Pu₃i₂$ and two plutonium rich phases, one of which, Pu_5Si_3 , is described in this paper. Pu_5Si_3 is isostructural with WsSis, which has the *D8m* structure type.

Experimental

A plutonium alloy specimen containing 37 at.% silicon was prepared by co-melting the alloy constituents in an arc furnace and cooling the resulting ingot fairly rapidly to room temperature. Since $Pu₅Si₃$ contains 37.5 at. % silicon, the ingot contained a small amount of δ -Pu, which, under the microscope, was visible as a second phase between the $Pu₅Si₃$ grains. The ingot was crushed and small single-crystal fragments were selected for X-ray analysis. Preliminary precession photographs were taken which showed

Table 1. *Crystallographic data for* PusSi3

Tetragonal, Space group No. 140, *I4/mcm* $a = 11.409 \pm 0.003$ Å (λ (Mo K_{α_1}) = 0.70926 Å) $c = 5.448 + 0.002$ Å *Z=4* $D_x = 11.98$ g.cm⁻³ $D_m = 12.0 \text{ g.cm}^{-3}$

* Work performed under the auspices of the U.S. Atomic Energy Commission.

that the compound was probably isostructural with the W_5Si_3 or DS_m structure type (Aronsson, 1955). Subsequent quantitative treatment verified this relationship with W₅Si₃. Crystallographic data are summarized in Table 1.

Unit-cell parameters and reflection intensities were measured with a carefully aligned single-crystal orienter on an XRD 5 apparatus, with $Mo K\alpha$ radiation. Background corrections were made by means of the balanced filter technique. The crystal selected for investigation had a maximum dimension of about 0.11 mm, which was in a direction approximately parallel to [110], the rotation axis. The entire hemisphere of the reciprocal lattice was investigated within a limiting sphere bounded by $2\theta_{\text{Mo}}=55^\circ$. The shape of the crystal was approximated by six bounding plane faces. Absorption corrections were made by using the Busing & Levy (1957) method and Burnham's (1962) program which we modified for single-crystal orienter geometry. Transmisson factors varied from 0.26 to 0.44. After absorption corrections were applied the equivalent reflections (eight for the general *hkl* reflection) were averaged. An \overline{R} index formed by comparing equivalent observed reflections was 5.3% based on F and 9.8% based on $F²$. There were 223 non-equivalent observed reflections out of 244 possible.

Refinement of the structure

A least-squares refinement of the structure was made with the positions given by Aronsson (1955) for W_5Si_3

Extinction parameter: $g = 9.55 \pm 0.5 \times 10^{-8}$.

THE CRYSTAL STRUCTURE OF Pu₅Si₃

Table 4. Observed and calculated structure factors for Pu_5Si_3

The column headings are h , F_o and F_c . If F_o is negative the minus sign means 'less than'

as starting parameters. The function minimized was $\mathcal{Z}w(\Delta F)^2$ with w determined from the counting statistics according to the method derived by Evans (1961). Unobserved reflections were given zero weight. The silicon form factor was that given in *International Tables for X-ray Crystallography* (1962). A recently calculated relativistic plutonium form factor was used and to this a $\Delta f'$ correction of -8.26 electrons was applied.* The scattering curves were used in the functional form

$$
f(s) = \sum_{i=1}^{n} a_i \exp(-b_i s) + c
$$

where $s = \sin \theta / \lambda$, and $n = 3$ for silicon and $n = 4$ for plutonium. The coefficients are given in Table 2. A secondary extinction parameter was also included so that the observation equations were of the form

$$
\varDelta \mathrm{F} \, = \, |F_{\mathrm{obs}}| - \frac{K|F_c|}{\displaystyle\sqrt{\Big(1+g\,\mathrm{Lp}\Big(\frac{2(1+\cos^42\theta)}{(1+\cos^22\theta)^2}\Big)|F_c|^2\Big)}}
$$

where g is the extinction parameter (Zachariasen, 1963).

Isotropic least-squares calculations were made first. These calculations showed that $Pu₅Si₃$ was indeed isostructural with WsSis. Finally, anisotropic calculations were made, and the final parameters are given in Table 3. After the last cycle the changes as fractions of the standard deviations were $< 6 \times 10^{-4}$ for position parameters, $\langle 2 \times 10^{-3}$ for thermal parameters and 1.5×10^{-2} for the extinction parameter. Observed and calculated structure factors are given in Table 4. The final R index with unobserved reflections omitted is **5.4%.**

Discussion

The interatomic distances in $Pu₅Si₃$ are listed in Table 5. The standard deviations given in the table were computed with correlation terms included but no account was taken of possible errors in the lattice constant values.

The anisotropic thermal parameters were trans-

Table 5. *Interatomic distances in* Pu₅Si₃

$Pu(1) - 4Si(2)$ $-2Pu(1)$ $-8Pu(2)$	$2.893 + 0.015$ Å $2.724 + 0.0$ $3.599 + 0.002$		$Si(1) - 2Si(1)$ 2.724 ± 0.0 Å $-8\,\mathrm{Pu}(2)$ 3.025 ± 0.001
$Pu(2) - 2Si(1)$ $-1 Si (2)$ $-1 Si (2)$ $-2Si(2)$ $-2Pu(1)$ -1 $Pu(2)$ $-2Pu(2)$ $-2Pu(2)$ $-2Pu(2)$	$3.025 + 0.001$ $3.010 + 0.015$ $3.104 + 0.006$ $3.164 + 0.002$ $3.599 + 0.002$ 3.125 ± 0.003 $3.351 + 0.002$ $3.491 + 0.002$ 3.820 ± 0.002	$Si(2) - 2Si(2)$ $-2Pu(1)$ $-2Pu(2)$ $-2Pu(2)$ $-4Pu(2)$	$4.025 + 0.025$ $2.893 + 0.015$ $3.010 + 0.015$ $3.104 + 0.006$ $3.164 + 0.002$

* Tables of scattering factors and anomalous dispersion terms calculated from relativistic wave functions are in preparation.

 $A C 17 - 62$

formed to obtain the axes and orientations of the thermal ellipsoids. These quantities are given in Table 6. Pu(2) and $Si(1)$ have essentially isotropic thermal motion. Pu(1) and $Si(2)$ have a significantly larger amplitude in the *xy* plane than they have parallel to z. The reason for the anistropy of Pu(1) is clear, for these atoms lie rather close together in a linear chain parallel to z and, hence, can vibrate most easily in a direction normal to this chain. There is no obvious constraint on the motion of Si(2).

Table 6. *Thermal ellipsoids in* Pu₅Si₃

		r.m.s. Amplitude	Orientation relative to the crystallographic axes		
Atom	Axis		α	b	c
Pu(1)	ı	$0.128 + 0.005$ Å	0°	90°	90°
	2	$0.128 + 0.005$	90	0	90
	3	$0.090 + 0.008$	90	90	0
Pu(2)	ı	$0.119 + 0.004$	$17 + 32$	$73 + 32$	90
	$\overline{2}$	0.114 ± 0.004	$107 + 32$	$17 + 32$	90
	3	$0.107 + 0.003$	90	90	0
Si(1)	ı	$0.116 + 0.038$	45	45	90
	2	$0.112 + 0.038$	135	45	90
	3	$0.079 + 0.046$	90	90	0
Si(2)	ı	$0.083 + 0.043$	0	90	90
	$\boldsymbol{2}$	$0.083 + 0.043$	90	0	90
	3	$0.090 + 0.057$	90	90	0

A difference Fourier synthesis was computed in order to determine if any significant features remained. The sections at $z=0$ and $\frac{1}{4}$ are shown in Figs. 1 and 2. The only feature of significance is the hole of \sim 12 e. Å -3 at $0, \frac{1}{2}, 0$, the point half-way between the Pu(1) atoms. The negative region extends all along the line $0, \frac{1}{2}, z$

Fig. 1. Difference Fourier section at $z=0$. Contours are at 2.0 e.Å -3 , the approximate standard deviation of the electron density. Positive contours are heavy lines and negative contours light lines. The zero contour is dotted.

and the hole may be accounted for by the closeness of the Pu atoms. In computing the difference Fourier synthesis, two overlapping spheres are subtracted and

Fig. 2. Difference Fourier section at $z=0.25$ for $Pu_sSi₃$. Contours as in Fig. 1.

thus, in the overlapping region, too much electron density was removed.

All calculations were performed with an IBM 7090 or 7094 with programs written by the authors. We wish to thank Mr. V. O. Struebing for preparing the specimen.

References

A_aONSSON, B. (1955). *Acta Chem. Scand.* 9, 137.

- BURNHAM, C. W. (1962). I.U.Cr. *World List of Crystallographic Computer Programs,* Program 338.
- BUSING, W. R. & LEVY, H. A. (1957). *Acta Cryst.* **10,** 180.
- COFFINBERRY, A. S. & MINER, W. N. (1961). *The Metal Plutonium.* Chap. XXV by Ellinger, F. H. Univ. of Chicago Press.

EVANS, H. W. (1961). *Acta Cryst.* 14, 689.

International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

ZACHARIASEN (1963). *Acta Cryst.* 16, 1139.

Acta Cryst. (1964). 17, 950

Anomalous Transmission of X-rays in an Elastically Deformed Non-Isotropic Crystal

BY D. POLDER AND P. PENNING

Philips Research Laboratories, N. V. Philips' Gloeilampenfabrieken, Eindhoven, The Netherlands

(Received 12 *August* 1963)

A point source of X-rays placed before a slice of dislocation-free germanium produces on a photographic plate behind the slice a picture that is characteristic of the anomalous transmission of the X-rays. The change in this picture due to bending of the germanium slice is explained theoretically in this paper. The characteristic features of the change are related with the fact that germanium is an elastically non-isotropie material.

Introduction

The aim of this paper is to account for certain phenomena connected with anomalous transmission of X-rays through elastically deformed perfect crystals that have been observed by van Bommel (1964) in this laboratory. In his experiments a thin slice of a disl0cati0n.free germanium crystal was irradiated with X-rays from a point source located near the surface of the crystal. A photographic plate some distance away from the opposite surface then clearly indicates the directions in which anomalous propagation of X-ray energy is possible through the crystal. In particular, if the [Ill] axis of the crystal is perpendicular to the surface, a picture with sixfold symmetry is obtained, which reveals anomalous transmission of X-rays along (220) planes of the germanium lattice. Van Bommel observed that bending of the crystal results in a characteristic change of the picture on the photographic plate as a result of increased absorption of the X-rays. For instance, bending can destroy the sixfold symmetry of the picture and can produce apparent threefold symmetry. It will be shown in this paper that these experimental results can be understood from the general theory developed in a previous paper (Penning & Polder, 1961) and that they are intimately connected with the cubic anisotropy of the tensor of the elastic compliance of germanium.

Resum6 of the general theory

In our previous paper it was emphasized that anomalous transmission of X-rays is connected with the fact that electromagnetic energy cannot propagate as a plane wave in an infinite medium with a dielectric