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The Crystal Structure of Pu,Si*

By Dox T. CRoMER, ALLEN C. LarsoN AND R. B. Roor, Jr.
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Pu,8i, is isostructural with W,Si,. The unit cell is tetragonal, space group No. 140, I4/mem, a=
11-409, ¢=5-448 A, and there are four formula units per unit cell. Least-squares refinement of

counter data has been carried out.

Introduction

The plutonium-silicon binary system contains at least
five compounds (Coffinberry & Miner, 1961). These
are PuSi, PusSis, PuSiz and two plutonium rich phases,
one of which, PusSis, is described in this paper. PusSizis
isostructural with WsSiz, which has the D8, structure

type.
Experimental

A plutonium alloy specimen containing 37 at.9%
silicon was prepared by co-melting the alloy constitu-
ents in an arc furnace and cooling the resulting ingot
fairly rapidly to room temperature. Since PusSis
contains 37-5 at.9, silicon, the ingot contained a small
amount of §-Pu, which, under the microscope, was
visible as a second phase between the PusSiz grains.
The ingot was crushed and small single-crystal frag-
ments were selected for X-ray analysis. Preliminary
precession photographs were taken which showed

Table 1. Crystallographic data for PusSis
Tetragonal, Space group No. 140, I4/mcm

11-409 + 0-003 A (A(MoKwx,) = 0-70926 A)
5-448+0-002 A

c =
=4
= 11-98 g.cm™3
=120 g.cm~3

* Work performed under the auspices of the U.S. Atomic
Energy Commission.

that the compound was probably isostructural with
the WsSi; or D8, structure type (Aronsson, 1955).
Subsequent quantitative treatment verified this
relationship with WsSis. Crystallographic data are
summarized in Table 1.

Unit-cell parameters and reflection intensities were
measured with a carefully aligned single-crystal
orienter on an XRD 5 apparatus, with Mo K« radiation.
Background corrections were made by means of the
balanced filter technique. The crystal selected for
investigation had a maximum dimension of about
0-11 mm, which was in a direction approximately
parallel to [110], the rotation axis. The entire hemi-
sphere of the reciprocal lattice was investigated within
a limiting sphere bounded by 20mo=55°. The shape
of the crystal was approximated by six bounding plane
faces. Absorption corrections were made by using the
Busing & Levy (1957) method and Burnham’s (1962)
program which we modified for single-crystal orienter
geometry. Transmisson factors varied from 0-26 to
0-44. After absorption corrections were applied the
equivalent reflections (eight for the general 2kl reflec-
tion) were averaged. An R index formed by comparing
equivalent observed reflections was 5-39, based on F
and 9-8% based on F2. There were 223 non-equivalent
observed reflections out of 244 possible.

Refinement of the structure

A least-squares refinement of the structure was made
with the positions given by Aronsson (1955) for W5Sis

Table 2. Coefficients for analytic form factor curves

oy b, a, b, a, by a, by c
Si 6-737 1-718 4-168 47-529 1-587 6-035 — — 1-486
s=0 to 1.5 A-1
Pu 36-576 0-497 23-790 3223 16-679 14-156 3-405 93-209 523
s=0 to 1-99 A-1 (Af' = —8-26)
Table 3. Final least-squares parameters for Pu,Sig

Atom  Position set z y z B,, x 10° B,, x 108 B, x 108 B,, x 108
Pu(l) 4(b) 0-0 05 0-25 248+ 18 By, 542 + 96
Pu(2) 16(k) 0-0855 + 0-0001 0-2208 + 0-0001 0-0 213+ 15 199+15  756+49 10+19
8i(1) 4(a) 0-0 0-0 0-25 103 + 109 B, 534+ 675
Si(2) 8(h) 0-1582 4+ 0-0011 4z 00 197 + 87 B, 420+190  11+197

Extinction parameter: g=9-55+0-5x 108,
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Table 4. Observed and calculated structure factors for Pu,Si,
The column headings are k, F, and F,. If F, is negative the minus sign means ‘less than’
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as starting parameters. The function minimized was
2w(AF)? with w determined from the counting stati-
stics according to the method derived by Evans (1961).
Unobserved reflections were given zero weight. The
silicon form factor was that given in International
Tables for X-ray Crystallography (1962). A recently
calculated relativistic plutonium form factor was used
and to this a Af’ correction of —8:26 electrons was
applied.* The scattering curves were used in the
functional form

f(s) = éai exp (—bis)+c

where s=sinf/A, and n=3 for silicon and n=4 for
plutonium. The coefficients are given in Table 2. A
secondary extinction parameter was also included so
that the observation equations were of the form

K|F,|

2(1 + cos* 26)
V(l +gLp ((1 + c0s220)2 ) IF”'Z)

where g is the extinction parameter (Zachariasen,
1963).

Isotropic least-squares calculations were made first.
These calculations showed that Pu,Si; was indeed
isostructural with WsSis. Finally, anisotropic calcula-
tions were made, and the final parameters are given
in Table 3. After the last cycle the changes as fractions
of the standard deviations were < 6 x 10~ for position
parameters, < 2x10-3 for thermal parameters and
1:5x 102 for the extinction parameter. Observed and
calculated structure factors are given in Table 4. The
final R index with unobserved reflections omitted is
549%.

AF = IFobs[ -

Discussion

The interatomic distances in PuSiz are listed in Table
5. The standard deviations given in the table were
computed with correlation terms included but no
account was taken of possible errors in the lattice
constant values.

The anisotropic thermal parameters were trans-

Table 5. Interatomic distances in PusSiz
Pu(1)-4Si (2) 2-893+0:015 A Si(1)-28i (1) 2:724+0:0 A

—2Pu(l) 2-724+0-0 —8Pu(2) 3-025%+ 0-001
-8Pu(2) 3-599+0-002

Pu(2)-28i (1) 3-025+ 0-001 Si(2)-28i (2) 4-025+ 0025
~18i (2) 3-010+0-015 —2Pu(l) 2-893+0-015
~18i (2) 3104 +0-006 —2Pu(2) 3-010+0-015
~28i (2) 3164 +0-002 —2Pu(2) 3-104+0-006
~2Pu(1) 3-599 + 0-002 —4Pu(2) 3164+ 0-002
-1Pu(2) 3-125+0-003
-2Pu(2) 3351+ 0-002
—2Pu(2) 3-491+ 0-002
-2Pu(2) 3-820+ 0-002

* Tables of scattering factors and anomalous dispersion
terms calculated from relativistic wave functions are in
preparation.
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formed to obtain the axes and orientations of the
thermal ellipsoids. These quantities are given in Table
6. Pu(2) and Si(1) have essentially isotropic thermal
motion. Pu(l) and Si(2) have a significantly larger
amplitude in the xy plane than they have parallel to 2.
The reason for the anistropy of Pu(l) is clear, for these
atoms lie rather close together in a linear chain parallel
to z and, hence, can vibrate most easily in a direction
normal to this chain. There is no obvious constraint
on the motion of Si(2).

Table 6. Thermal ellipsoids in PusSis

Orientation relative to the
crystallographic axes

Atom Axis r.m.s. Amplitude 22 b c
Pu(l) 1 0-128+0-005 A 0° 90° 90°
2 0-128 +0-005 90 0 90
3 0-090 + 0-008 90 90 0
Pu(2) 1 0-119 +0-004 17+ 32 73+ 32 90
2 0-114 +0-004 107 +32 17+ 32 90
3 0-107 £ 0-003 90 90 0
Si(1) 1 0-116+0-038 45 45 90
2 0-112+0-038 135 45 90
3 0-079 +£0-046 90 90 0
Si(2) 1 0083+0-043 0 90 90
2 0-083 + 0-043 90 0 90
3 0-090 + 0-057 90 90 0

A difference Fourier synthesis was computed in
order to determine if any significant features remained.
The sections at z=0 and } are shown in Figs. 1 and 2.
The only feature of significance is the hole of ~12 e.A-3
at 0, 4, 0, the point half-way between the Pu(l) atoms.
The negative region extends all along the line 0, 4, z

x=0 z=0 x=0°5

\]

O (i

s Q U

3
a7 -

e

s D170

Fig. 1. Difference Fourier section at z2=0. Contours are at
2.0 e.A-3, the approximate standard deviation of the
electron density. Positive contours are heavy lines and
negative contours light lines. The zero contour is dotted.

and the hole may be accounted for by the closeness of
the Pu atoms. In computing the difference Fourier
synthesis, two overlapping spheres are subtracted and
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Fig. 2. Difference Fourier section at z2=0-25 for Pu;Sij.
Contours as in Fig. 1.
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thus, in the overlapping region, too much electron
density was removed.

All calculations were performed with an IBM 7090
or 7094 with programs written by the authors. We wish
to thank Mr. V. O. Struebing for preparing the speci-
men.
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Anomalous Transmission of X-rays in an Elastically Deformed
Non-Isotropic Crystal

By D. PorpER AND P. PENNING
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(Recetved 12 August 1963)

A point source of X-rays placed before a slice of dislocation-free germanium produces on a
photographic plate behind the slice a picture that is characteristic of the anomalous transmission
of the X-rays. The change in this picture due to bending of the germanium slice is explained
theoretically in this paper. The characteristic features of the change are related with the fact that

germanium is an elastically non-isotropic material.

Introduction

The aim of this paper is to account for certain
phenomena connected with anomalous transmission
of X-rays through elastically deformed perfect crystals
that have been observed by van Bommel (1964) in
this laboratory. In his experiments a thin slice of a
dislocation-free germanium crystal was irradiated with
X-rays from a point source located near the surface
of the crystal. A photographic plate some distance
away from the opposite surface then clearly indicates
the directions in which anomalous propagation of
X-ray energy is possible through the ecrystal. In
particular, if the [111] axis of the crystal is perpen-
dicular to the surface, a picture with sixfold symmetry
is obtained, which reveals anomalous transmission of
X-rays along (220) planes of the germanium lattice.
Van Bommel observed that bending of the crystal

results in a characteristic change of the picture on
the photographic plate as a result of increased absorp-
tion of the X-rays. For instance, bending can destroy
the sixfold symmetry of the picture and can produce
apparent threefold symmetry. It will be shown in
this paper that these experimental results can be
understood from the general theory developed in a
previous paper (Penning & Polder, 1961) and that they
are intimately connected with the cubic anisotropy
of the tensor of the elastic compliance of germanium.

Resumeé of the general theory

In our previous paper it was emphasized that
anomalous transmission of X-rays is connected with
the fact that electromagnetic energy cannot propagate
as a plane wave in an infinite medium with a dielectric



